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SUMMARY

The target of this paper is to discuss the effect of covariates in the family of multistage
models, which are used to describe the experimental carcinogenesis. The prediction
near zero is rather difficult as any model in the neighborhood of zero can be ap-
proximated with a linear function. The class of Multistage Models was adopted to
approximate the data. The effect of covariates was examined and their influence on
prediction. For a real data set the logistic model was applied and the effect of the
covariate “age” was examined.
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1. Introduction

In quantitative toxicology the terms “dose” (i.e. the amount of a chemical or energy
in a radiological situation administered to or received by exposed subject), “effect”
(i.e. an action as a result of a stimulus received through a receptor), “response” (i.e.
any detectable change) are approached and linked through a statistical model.
Eventually there are different statistical models to describe a process by which
a normal cell becomes malignant through, at least one, transformation. When the
malignancy is referred to a tumour we are referred to cancer. Sometimes the interest
is focused on the “growth rate” of affected tissues as malignant tumours are capable of
floating away and forming new malignant growths in other sites. Humans are certainly
exposed to carcinogens such as nicotine but in principle risk assessments are based on
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animals rather than humans. This is also accepted for two main reasons: there are no
reliable estimates for “safe doses” and the epidemiological methods are insensitive to
a small increase in cancer. It is assumed that a “safe dose” is the dose which will not
increase the current cancer incidence rate by more than an “acceptable” low risk level,
see the early work the Hartley and Sielken (1977). The earlier suggestion to estimate
the “virtually safe dose” (VSD) was based on confidence intervals and it was rather
mechanistic (Crump et al., 1977; Armitage, 1982). The upper confidence limit for the
proportion of tumours was calculated and the dose-response curve was extrapolated
towards zero, for the investigated animal species. Although a different terminology is
adopted for the percentile point Ly, p € (0,1), like MTD — maximum tolerance dose,
TD - tumourigenic dose, ED — estimated dose, LD - lethal dose, the point remains
the same: adopt that model which will provide the best downwards extrapolation to
Ly, as it has no meaning to perform experiments below an unknown level of dose.

The crucial issue when fitting a multistage model is prediction, and therefore the
effect of covariates is essential. There is a special interest in low-dose estimation in
experimental carcinogenesis as the effect of a low dose is difficult to be investigated,
le. a “small” dose might provide no response. Moreover, different models appear
to be “linear” in the neighborhood of zero, see section 4, and therefore it is difficult
to choose the appropriate model for prediction. In this paper the multistage models
(MM) are briefly reviewed in Section 2 and the effect of covariates in experimental
carcinogenesis is discussed in Section 3.

2. Multistage models (MM)

Different nonlinear models have been developed and applied under the name ”mul-
tistage models”. For the class of models which is to be studied in this paragraph,
the target is to describe with a mathematical model the process leading to cancer,
i.e. the process by which a normal cell is transformed to a malignant one. The class
of MM has been applied for the analysis of a large number of epidemiological data
(Armitage, 1985).The crucial issue when fitting an MM model is prediction.. To be
more specific, the task is to predict through the, assumed correct, model the low-dose
effects in a risk assessment. That is, extrapolation downwards in the neighbourhood
of zero, while prediction in statistics is rather related to a forward extrapolation.

Because tumour incidence data is titled to a prescribed dose-response relation-
ship, the approach to these data by toxicologists and environmentalists is rather
empirical, without a reference to an explicit dose-response model.

The dose-response curve, F(-) say, is a result of a binary response problem. From
a statistical point of view F(z) is the cumulative distribution function, describing,
through a probability model, the phenomenon, with x being the dose level. Moreover,
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F(z) is rather an assumed approximation, than a known deterministic mechanism for
the phenomenon which it describes.

This is true as the outcome Y; = 1 or 0, success or failure, is linked with the
covariates and parameters through a model, F say, in the form

where the covariate z; is going with the observation Y;, ¢ = 1,2,...n, with n denoting
the number of observations and @ the involved parameters.

The function F'(x) can be considered as a cumulative distribution function (cdf)
of a random variable Z, say, defined through the random variable Y as follows

1 i Z<a,
Y_Y(w)_{o it Z>uz

It is trivial then that P(Y = 1) = P(Z < z) = F(z) and E(Y) = F(z), Var(Y) =
F(z)(1 - F()).

When it is assumed that cancer is the result of a single event (or “hit“) in a single
cell, the one-parameter model

F(z) =1 - exp(—0z),0 >0 (2.1)

is considered, known as the one-hit model.

When a fixed number, k say, of (identical) “hits“ occur in a tissue the multi-
hit model is assumed to describe the phenomenon and the corresponding F(z) is
approximated by the assumed correct model

Ox
F(z)= (7-3_1?/0 z*lexp(—z)dz . (2.2)

When a suplinear relationship is assumed,the one-hit model is transformed to the
Weibull model with the shape parameter s > 1 and

F(z) =1 — exp(—0z*). (2.3)

With s <1 a supralinear Weibull model is considered in (2.3).

When it is assumed that the susceptible cell can be transformed through k& di-
stinct stages in order to be a malignant one, the phenomenon can be described by
the multistage model of Armitage-Doll (1954). The main assumption is that the
transformation rate from each stage to the next one is linear. Eventually, the cdf of
developing cancer from exposure to a dose z, within a fixed time period, is given by

F(z) =1—exp[—(0o + 61z + ... + Oz")], (2.4)
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where 6;, 1 = 0,1,...,k, are defined through the coefficients of the linear transfor-
mations assumed between stages, i.e. 8; = 0;(z) = \; + p;z with z being a constant,
continuously applied dose during the fixed sequence of k stages. It is assumed that
Ai > 0 and p; > 0. Actually,

k k k k
90 =H/\,‘, 91 = [Z()\‘/ul)]H)\“ veey 9k = H/J,i
i=1 i=1 i=1 i=1

The most usual forms of (2.4) are the multistage linear model and the multistage
model. Notice that model (2.4) is developed on a different biological insight and not
as a general mathematical form of the previous models.

The Logit and Probit models (McCullagh and Nelder, 1989), known as tolerance
distribution models in cancer risk assessment, are also useful to toxicology and are
included in the MM class.

The MM class appeared earlier (Armitage and Doll, 1954), and is based on the
assumption that a single normal cell may become fully malignant when a sequence
of k, say, irreversible heritable mutation-like changes occurred.. Now, under the
assumption that the intermediate cells are subject to a stochastic birth-death process
for cell proliferation and cell differentiation, when & = 2 the Biologically Based Models
(BBM) were created by Moolgavkar and his associates, see Moolgavkar and Venzon
(1979), and developed by a series of papers by Luebeck and Moolgavkar (1989, 1991,
1992). For an optimal design approach for estimating the percentiles L,, in the class
of MM, see Kitsos (1998).

In principle, the parameter estimation is based on the method of maximum like-
lihood, see for details Dobson (1990, chapter 4) among others. The nice property is
that the method of scoring provides an iterative weighted least squares scheme, which
converges to the vector of estimates of 0, 0 say.

Example 1. Consider the one-hit model as in (2.1). For estimating the unknown 6
the log-likelihood 1(#) is formed and is proportional to

1(0) o< =8> (mi — yi)zi + »_ yilog(1 — exp(—bxy)),

where y; is the number of responses among m; animals after a predetermined time
when treated with dose z;, i = 1,2,...n. The Newton-Raphson iteration 6,11 =
0, — 1'(6,)/1"(6,) provides the MLE . For the numerical evaluation of MLE through
the Newton-Raphson scheme for the one-hit model, see Kitsos (1998).

The two families of models, MM and BBM, are, in principle, based on different
hazard functions. Indeed: if the mutation rates are very small and independent of
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time the hazard function of cancer for the Armitage-Doll model is
M) = c(t —to)*, ¢>0, (2.5)

where k is the number of stages and t; is a fixed and positive number for the growth
of tumour. At time ¢, there are no cancer tumours, while at time ¢ > to a cancer
tumour is developed.

When interest is focused on identifying etiological agents of cancer and developing
the appropriate statistics for risk assessment of environmental agents, then the most
appropriate hazard function is the one defined by Cox as

Alt) = X ()S(W, ) (2.6)

and this is essential in the BBM class of models. With A\g(t) > 0 known as the baseline
hazard function, S(W, §) is the risk function which relates the environmental factor
W, i.e. the covariates, and the vector of unknown parameters £.

The BBM are based on a Poisson stage-to-stage process. For example, Moolga-
vkar and Venzon (1979) assumed a Poisson process with birth rate at the i-th cell
bi(t) = ib and death rate at the i-th cell d;(t) = id, i.e. a homogenous birth-rate
process.

In this paper we restrict our interest to the MM class of models and we are focused
on the effect of covariates. When the target is prediction this effect is essential and
it is discussed in Section 3.

3. The effect of covariates for prediction

In most bioassays and at the experimental carcinogenesis as well, the target is to
compare two different therapies/factors or to evaluate the prognostic factors. Because
the population under study is rather heterogeneous with respect to prognosis, it is
asked to adjust the covariate effect describing the above-mentioned heterogeneity (Cox
and Snell, 1989). Let x; be the factor of interest and x, the covariate and 6,60, be
the corresponding regression parameters (for the classical regression model see Seber,
1977). The full model with link function g (McCullagh and Nelder, 1989), is [recall
that F(z) = E(Y) in Section 2]

F(iL‘l, iL‘z) = F(ZE) = E(Y/CIJl, 172) = g_l(go + 012 + (921‘2), (31)
while the restricted model with estimate 67 is

Note that the models (3.1) and (3.2), although nonlinear, are intrinsic linear.
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The variances corresponding to models (3.1) and (3.2) are

Var(Y/z1,22) = 0%.19, Var(Y/xz) = 0%,. (3.3)
Therefore, the relative efficiency of 6, to é: can be defined as
s ax. 0% 1-p?
RE(6,,0,) = 212 = 12 3.4
! 0% 1—pYaa 34)

with p,y = Cor(z1,22) and py, ; being the partial correlation between Y and x, with
x; assumed to be fixed, i.e. the effect of xo on Y. From (3.4) is easy to see that

s ok =1 ?f lpye1l = |pi2l,
RE(01,6,) = <1 if pp > pyay, (3.5)
>1 if pyp <pyas-

In principle, our interest is concentrated on a randomized treatment effect, i.e.
P12 = 0. That is, the emphasis is given to adjustment, as eventually RE(él, 9:) > 1.
The question if 82 = 0, which is actually a statistical null hypothesis, or 65 # 0, the
alternative, is crucial on misspecification by omitting or including z,. Indeed: if x4
is adjusted for, the assumed correct model (3.1) is fitted if 83 # 0. But if 6, = 0
this leads to overspecification of the model. If z; is not included, the (3.2) model is
correct if 62 = 0, while if 82 # 0 the model (3.2) is underspecified.

If the link function is the logistic function the models (3.1) and (3.2) are reduced

to
Prig
log——-"— = 0y + 0171 + 0272, (3.6)
1-Pri2
P, x| %
log1 P 0y + 0121, (3.7)

with P1.12 = P[Y =1 I CEl,.’EQ] and P1,1 = P(Y =1 | :1:1).

The above discussion is valid for z; = 22 and also when the logistic function is
replaced with function (2.4).

Note that for g(-) being the logistic model, the curvature of 1/¢'(-) is a convex
function, leading to a downward bias of (Z)I, i.e. lim | é: |<| 81 |. Therefore, the bias
tends to zero only when 6; = 0.

There is a similarity between the logistic and the Cox model (Prentice and Kalb-
fleisch, 1979; Schumacher et al., 1987; Lagakos and Schoenfeld, 1984), while the be-
haviour of the variances of the adjusted and unadjusted estimators needs, we think,
more investigation in this particular problem. Note that Var(6g) and Var(67) in (3.7)
can be reduced if a D-optimal design approach is adopted, but still (3.5) holds with
0* being the D-optimum vector of parameters.
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Ezample 2. We are referring to the Ille-et-Vilaine study of oesophagel cancer, see
Table 6.1 of Breslow and Day (1980). There are 12 risk categories defined by a two-
level exposure (variable alc) and six age strata (variable age). The exposure is the
average alcohol consumption: 0-79 g/day is considered as “unexposed” while over
this amount means “exposed”. The strata of ages come from the grouped ages 25-34,
35-44, 45-54, 55-64, 65-74, 75+. The data are summarized in Table 1 (Table 6.1 in
the reference).

Table 1. The Ille-et-Vilaine study, Breslow and Day (1980)

ale 1 0 1 0 1 0 1 0 1 0 1 0
age 1 1 2 2 3 3 4 4 5 5 6 6
Cases 1 0 4 5 25 21 42 34 19 36 5 8
Total' 10 106 30 169 54 159 69 173 37 124 5 39

!The sum of cases and controls

The GLIM package was used to form models (3.6) and (3.1). The best fitting
model (3.6) is

——— = —4.100 + 1.780 alc + 0.616 age.

The log-likelihood ratio statistic, also known as scaled deviance D, say D, for this
case, was evaluated as D; = 31.92. The variances of the estimates @i, 1=20,1,2, are
0.09862, 0.005315 and 0.03500, respectively.

When fitting model (3.7), we get

log P11

= —1.857 4+ 1.730alc.
1-p1a

The scaled deviance was evaluated as Dy = 115.17. The variances of the estimates
9:, 1=0,1, are 0.01111 and 0.3070, respectively. D follows a X,f_p distribution with
n being the number of observations and p the number of parameters involved. When
a good description of the model is provided then we can expect that D is almost equal
to n — p. Using the GLIM program an estimate of the variance can be obtained as
D/(n — p). Therefore, the values corresponding to (3.3) are

estimated 0%, = 31.92/9 = 3.54,

estimated 0%, = 115.17/10 = 11.52.
From (3.4), the relative efficiency of 8; to @I is estimated as 11.52/3.54 = 3.25 >
1. The effect of the covariate age can also be considered by evaluating the fitted

p; values. When the model (3.6) is assumed, p;, i = 1,2,...12, cover the interval
[0.029774,0.7982], while when the model (3.7) is fitted p; are either around 0.1305 or
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0.4683, as alc is a binary variable. That is, for prediction purposes the effect of z is
essential on evaluating p;.

Ezxample 3. Consider the whole data set of Ille-et-Vilaine study, as in Appendix I of
Breslow and Day (1980). There are six age groups, as in Example 2 (variable age), 4
alcohol groups : 0 — 39,40 — 79,80 — 119, 120+ in g/day (variable alc) and 4 tobacco
groups: 0 — 9,10 — 19,20 — 29,30+ in g/day (variable tob). Therefore, in total we
have 96 observations.

Different logistic models were fitted. We report only the following results:

Variables in Scaled Expected D Estimate of
model deviance D or df variance
1. age, alc, tob 100.40 84 1.195
2. ale, tob 221.42 89 2.485

Therefore, the relative efficiency of the covariate age is 2.487/1.195 = 2.08 > 1. Note
that if all variables are included in the model (fit age-alc-tob in GLIM terms) there
are zero degrees of freedom.

With z; and z4 as above, the hazard function in the Cox model is
A(t) = Xo(t) exp(0171 + O222), (3.8)

with Ag(t) the unknown baseline hazard function (see Section 2). When the covariate
o is omitted the Cox model is

A(t) = do(t) exp(0z1). (3.9)

Asymptotically, this leads to underestimation of the randomized effect in the Cox
model, as in the logistic model. The effect 6, is estimated with no bias only when
01 = 0. For an extended discussion for hazard rate models with covariates, see
Prentice and Kalbfleisch (1979).

The above discussion we think provides evidence that in the MM class the effect
of covariates can be essential in the same way as in the BBM class, especially when
the target is prediction.

4. Discussion

A general prediction problem has been discussed under a different approach by Kitsos
(1993), with some applications to carcinogenesis. In this paper it is pointed out that
the effect of covariates is crucial when the target is to solve the equation G(L,) = p
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from model (3.2) rather than from model (3.1) and the VSD L, has to be estimated.
The effect of covariate omission in experimental carcinogenesis is introduced and the
relative efficiency is evaluated. The semiparametric nature of the Cox model does not
allow to apply completely the techniques for generalized linear models which are an
extension of the same techniques for the general linear model.

Now, the Risk Above Background (RAB) for a dose level z is defined for the MM

RAB(z) = F(l"’z;fégm

It is easy to see that for the one hit model or the Weibul model
RAB(z) = F(z)

and therefore for these models RAB(L,) = p.
For the generalized multistage model it is easy to see that at dose level L, we
have

RAB(L,) =1 — (1 — p)ee.
Moreover, for the generalized multistage model

d RAB(z)

dx =01,

=0
that is, for low dose the incremental risk for a “small” dose level in the neighborhood of
zero is approximately linear. This approximation to the unknown curve is equivalent
to the tangent to the dose-response curve at the point = 0. Actually, this is true for
any k in the model (2.4), and thus the prediction near zero is a hazardous procedure.
The effect of covariates is essential, as the target is the “best in terms of prediction”
model to be adopted.

Certainly, the discussed case was referred to uncorrelated covariates and therefore
an open problem might be the multicolinear predictive covariates, with application
to experimental carcinogenesis.
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O roli zmiennych towarzyszacych w do$wiadczalnych badaniach
nad rakiem

STRESZCZENIE

Celem pracy jest przedyskutowanie wplywu zmiennych towarzyszacych w pewnej ro-
dzinie modeli wieloetapowych stosowanych w experymentalnych badaniach nad ra-
kiem. Predykcja w poblizu zera jest trudna gdyz dowolny model moze by¢ w tym
obszarze przyblizony funkcjg liniowa. Do aproksymacji danych wykorzystano klase
modeli wieloetapowych. Zbadano wplyw zmiennych towarzyszacych na predykcje.
Dla pewnych danych rzeczywistych zastosowano model logistyczny oraz przeanalizo-
wano wplyw zmiennej towarzyszacej “wiek”.

SLOWA KLUCZOWE: percentyl, predykcja, reakcja, efektywno$é, funkcja ryzyka, funk-
cja laczaca.



